skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lorenz, Virginia_O"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the realm of quantum information processing, harnessing high-dimensional photonic systems provides a pathway to overcome limitations of traditional two-level systems. Orbital angular momentum (OAM) of light has emerged as a powerful tool for creating and manipulating high-dimensional entanglement, promising increased information capacity and enhanced security in quantum communication protocols. However, conventional methods like spontaneous parametric downconversion encounter challenges due to non-uniform production rates of Laguerre–Gaussian modes. This study explores the potential of spontaneous four-wave mixing in ring-core fibers (RCFs) as a viable platform for generating OAM photon pairs with tailored spectral and spatial properties. We show that by controlling the topological charge of pump photons, correlated, uncorrelated, and anti-correlated photon pairs can be engineered across arbitrary spectral ranges, essential for diverse quantum applications. Experimental noise characterization of the RCF-based source demonstrates a high coincidence-to-accidental ratio exceeding 4000, and a low heralded second-order correlation function (gH(2)<0.005), which confirms its operation well into the single-photon regime. This work demonstrates the potential of RCFs as a versatile platform for generating structured photon pairs, paving the way for future high-dimensional quantum communication and information processing applications. 
    more » « less
  2. Developing a quantum light source that carries more than one bit per photon is pivotal for expanding quantum information applications. Characterizing a high-dimensional multiple-degree-of-freedom source at the single-photon level is challenging due to the large parameter space as well as limited emission rates and detection efficiencies. Here, we characterize photon pairs generated in optical fiber in the transverse-mode and frequency degrees of freedom by applying stimulated emission in both degrees of freedom while detecting in one of them at a time. This method may be useful in the quantum state estimation and optimization of various photon-pair source platforms in which complicated correlations across multiple degrees of freedom may be present. 
    more » « less